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ECOLOGICAL SECURITY ASSESSMENT MODEL FOR THE CITY OF
MATLOSANA MUNICIPALITY IN THE NORTH WEST PROVINCE, SOUTH AFRICA

J. Cole, S. Sogayise, N. Dudumashe, M. Sethobya
Council for Geoscience, Pretoria, South Africa

An ecological security assessment model was created for the City of Matlosana Municipality in the North
West Province of South Africa for 2001, 2014, 2016, 2018 and 2020. The pressure-state-response model
considered the climate, mining activities, and population density to be the drivers that place pressure on the
ecological security of the municipality. Indicators of the pressures on and state and response of the
environment were derived from remote sensing data sets, including Landsat, Sentinel-2 and MODIS
satellites, and world population density and rainfall data provided by various organisations. Principal
component analysis was used to determine the indicator weights. Roughly 30 % of the municipality, has low
to very low ecological security. These areas cover the north and south of the municipality with the central
region generally more ecologically secure. Towns and mining areas are the most vulnerable, but they
constitute only up to 5 % of the municipal area. Two potential ecologically vulnerable areas were identified,
one in the northwest and another in the extreme southern section of the municipality.
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Introduction
A very effective way to assess and monitor the impact of Land Use and Land Cover (LULC)

change on the environment is through ecological security assessment models. The models evaluate
ecological indicators that provide information about the attributes and conditions of an ecosystem
(Longstaff et al., 2010). They relate the impact of selected pressures to current conditions and the
actions taken to maintain or restore the ecosystem’s health. An ecosystem is a community or
selection of communities (e.g. human, animal, plant life, micro-organisms, etc.) that interacts with
the environment (Freedman, 1998). Numerous models exist, but one of the most commonly used is
the Pressure-State-Response (PSR) model developed by the Organisation for Economic Co-
operation and Development (OECD) (Linster, Fletcher, 2001). This models the interaction between
external pressures on an ecosystem, the current state of the system, and the way in which the
ecosystem responds to the pressures.

The first step is to identify factors that put pressure on the ecosystem, establish indicators that
can be used to measure these, and select appropriate data sets from which they can be extracted.
The second set of indicators reports on the current state of the ecosystem. It assesses specific
aspects of the ecosystem that will be affected by the previously identified pressures. The last step is
to select indicators that give information about the response of the ecosystem. These are measurable
quantities that quantify improvements or deteriorations in the ecosystem and can be used to flag
areas of concern.

Study area
The City of Matlosana Municipality is located in the southeast of the North West Province,

South Africa (Fig. 1a). It covers the area of 3 617 km2. Summers are generally warm to hot
(November to February) and winters are cool and dry (May to August). The relief decreases from
northwest to southeast (Fig. 1b). Numerous rivers flow through the municipality and the Vaal River,
from which the municipality gets its water (Annual Report 2020-2021), forms the south-eastern
boundary of the municipality (Fig. 1¢). Grasslands and thornvelds cover most of the area (Fig. 1d).
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Farming is widespread in the municipality, ranging from cattle and game farming in the drier
west, maize and wheat in the central and southern regions, and a variety of crops in the wetter east
and northeast. Gold mining is prevalent in the Klerksdorp-Orkney-Stilfontein area in the east of the
municipality. Hartbeesfontein, where mining also takes place, is located about 28 km northwest of
Klerksdorp.

The municipality has a population of 447,000 people, with 89.4% urban and 10.6 % rural
residents (Annual Report, 2021). This equates to a population density of 124 people per km?.
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Fig. 1. (a) Locality map of the City of Matlosana Municipality. The blue polygon shows the North West Province,
and the orange polygon is the Matlosana Municipality; (b) Digital elevation model; (c) Drainage system; (d)
Biomes (SANBI 2006-2018); (e) Dominant lithologies in the Matlosana Municipality (CGS, 2019)
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Material and methods
A PSR model was developed for the Matlosana Municipality (Fig. 2). Pressure indicators

include climatic conditions, mining activities, and population growth. A regional vegetation health
study of the North West Province showed that the impact of climatic changes constituted a definite
risk to agricultural activities and the environment in general (Cole, Sogayise, Dudumashe, 2021).
Mining activities provide additional pressures in the form of subsidence due to a drop in the
groundwater table resulting from pumping in the mines, pollution in the form of acid mine drainage,
and changes in vegetation due to physical mining activities. Increasing population density is the
third major pressure.

Climactic conditions, mining activity, and population density pressures impact vegetation health,
soil moisture conditions, LULC, and the general population. Changes in these parameters give an
indication of the condition of the ecosystem.

The response of the ecosystem to the pressures considers human actions to deal with negative
pressure and the natural response of vegetation to these mitigating actions. The responses to the
identified pressures are:

e stable agricultural activity despite droughts;

e rehabilitation at mines, and

e increased living standards for the general population.

Socio-economic conditions in the municipality affect the consideration of whether certain
impacts are positive or negative. In most ecological sensitivity studies, any impact on the natural
environment is generally considered negative. However, due to the level of poverty in large parts of
the municipality, increased housing must be considered a positive response since it indicates
improved living conditions. Similarly, farming in the North West Province is important to the
national economy and food security in general. Although farming may adversely affect biodiversity,
it is an important contributor to the economic well-being of the region.
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Fig. 2. PSR ecological security assessment model developed for the Matlosana Municipality
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Data
An important requirement for the model is that historical data must be available to establish

change patterns, and the data must also be regularly updated to allow for continuous monitoring. In
this context, satellite remote sensing is ideal as it continuously collects vast quantities of data, and
many satellites have been active for multiple years and even decades. The major drawback with
satellite remote sensing data is cloud cover. For a change detection study, data from the same period
of each year must be compared to remove the effects of seasonal changes.

For this study, the joint NASA and USGS Landsat programme is the primary data source. The
satellite has bands in the visible, near infrared, short wave infrared and thermal infrared wavelength
ranges. The spatial resolution of 30 m for the optical data also allows for detailed studies. Landsat
thermal data have a resolution of 100 m.

Landsat does not provide data for all indicators, and additional data sources were used.
Unfortunately, these data sets generally have very low spatial resolution. Rainfall data with a spatial
resolution of about 5 km were obtained from the Climate Hazards group Infrared Precipitation with
Stations CHIRPS) (Funk et al, 2015). The MODIS (Moderate Resolution Imaging
Spectroradiometer) sensor aboard the Terra satellite provided evapotranspiration data with a spatial
resolution of 500 m (Running, Mu, Zhao, 2017).

Even though Landsat data cover such a long time period, MODIS and world population density
data (WorldPop, 2018) are only available from 2000, thus restricting the temporal extent of the
study.

For the Matlosana Municipality, ample cloud-free Landsat scenes are available for the dry
season (June-September), but to study vegetation health it is necessary to look at times of the year
where vegetation is expected to be healthy, i.e., the wet season (October—March). Naturally, the
rainy season will have regular cloud cover. It was impossible to find satellite scenes at the peak of
the rainy season that were cloud free over multiple years, and as a result, data from just after the wet
season had to be used. This is during the month of May in the study area. Cloud-free optical satellite
imagery was available for 2001, 2014, 2016, 2018, and 2020 (Table 1). Every effort was made to
obtain scenes collected roughly at the same time each year, but for 2016, the only cloud free scene
was recorded on 4 May. This may result in vegetation indices appearing healthier due to the earlier
date and not general drought conditions during the other years. Two scenes (171-078 and 171-079)
cover the Matlosana Municipality.

Table 1
Landsat scenes used in this study
Scene Date
LEO7 L2SP 171078 20010604 20200917 02 T1 4 Jun 2001
LEO7 L2SP 171079 20010604 20200917 02 T1
LCO8 L2SP 171078 20140531 20200911 02 TI 31 May 2014
LC08 L2SP 171079 20140531 20200911 02 T1
LCO08 L2SP 171078 20160520 20200906 02 T1 20 May 2016
LC08 L2SP 171079 20160520 20200906 02 T1
LC08 L2SP 171078 20180526 20200901 02 T1 26 May 2018
LC08 L2SP 171079 20180526 20200901 02 T1
LCO08 L2SP 171078 20200531 20200820 02 T1 31 May 2020
LC08 L2SP 171079 20200531 20200820 02 T1

MODIS evapotranspiration data (MOD16A2v6) were selected to cover the same periods (tTable
2). Each data set comprises data averaged over an eight-day period.
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Table 2
MODIS scenes used in this study

Scene Date

MOD16A2.A2001153.h20v11.006 25 May - 1 June 2014

MODI16A2.A2014145.h20v11.006 25 May - 1 June 2014

MOD16A2.A2016137.h20v11.006. 16 — 23 May 2016

MODI16A2.A2018145.h20v11.006 25 May - 1 June 2018

MODI16A2.A2020145.h20v11.006 24 —31 May 2020

The LULC classifications form a critical part of the ecological security assessment. The increase
or decrease in certain cover types can have a significant influence on the assessment. For example,
increasing mining may lead to more pollution, land degradation and hazards such as subsidence.
However, due to the socioeconomic situation in the municipality, the impact of land cover types is
not simply that more natural vegetation implies better ecological security. Improved living
conditions will have a positive effect on the environment, but this means more houses and less
natural vegetation.

The LULC data sets are qualitative, and to use them in the ecological security assessment model,
scores or values were assigned to the LULC types in a way that is applicable to a specific indicator.
For example, mining areas will have a significant negative impact on the environment and will be
assigned a high value where it is a pressure indicator, while wetlands, grasslands, etc., will be
assigned a low value.

The data and derived products used in the PSR model are listed in Table 3.

Table 3
Data and derived products used in the PSR model (Fig. 2)
Criterion Indicator category Indicator Data (resolution) Effect*
Pressure Human activity Population density WorldPop.org (90 m) -
Mining impact Extent of mining activity LULC (10 m and 30 m) -
Climate Modified visible and shortwave infrared drought Landsat (30 m) +
index (Sun et al., 2021).
See equation (A.1).
Rainfall CHIRPS (~5000 m) +
Temperature Landsat (30 m) -
State Vegetation Vegetation health index (Bento et al., 2018). See Landsat (30 m) +
equation (A.2).
Normalised difference moisture index (Zhang et al., Landsat (30 m) +
2016). See equation (A.5).
Soil moisture Normalised difference soil moisture index Landsat (30 m) +
(Haubrock et al., 2008). See equation (A.6).
Evapotranspiration Evaporative stress index (Qiu et al., 2021). See MODIS -
equation (A.7).
Response Rehabilitation at Modified soil adjusted vegetation index in mining Landsat (30 m) +
mines areas (Qi et al., 1994).
See equation (A.8).
Iron pollution in mining areas. Landsat (30 m) -
See equation (A.9).
Stable agricultural Expanded cultivated areas LULC (10 m and 30 m) +
productivity
Increased living More housing LULC (10 m and 30 m) +
standards
Increasing employment (Statistics South Africa, Census and other +
2011; EDR, Quarter 2 of 2015-2016, 2015; EDR, government data
Quarter 2 0f 2017-2018, 2017; EDR, Quarter 2 of
2018-2019, 2018; EDR, Quarter 2 of 2021-2022,
2021; EDR, Quarter 3 of 2021-2022, 2021)

A positive effect: The greater the value the more positive the impact is, Negative effect: The greater the value the more negative the

impact is
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Data preparation

Spatial resolution
The data sets have varying resolutions (Table 3) and must be resampled to the required

resolution for the model. Most of the indicators were derived from 30 m Landsat data, and since a
major focus of the study is on the impact of mining on the ecological system, it is preferable to keep
the resolution this high. Acid mine drainage may be restricted to localised zones and will be better
detected by higher spatial resolution data.

Normalisation
The indicators measure different types of parameters with different value ranges and need to be

normalised to ensure that all indicators contribute to a parameter equally. To identify vulnerable
areas, indicator values need to be normalised according to whether they have a positive or negative
effect on the ecosystem (Bai, Tang, 2010) (Table 3).
For positive indicators, the normalisation equation is
X —X_.
Y, = i “min (1)

Kmax - Kmln

and for negative indicators it is
X — X
Y, = —max” i 2)
Kmax - Kmin
where Xmax and Xmin are the maximum and minimum values of the indicator over the whole
study period, and Xi is the indicator value for each year (Wang, Sun, Wu, 2018).

Indicator independence
To avoid statistical bias, it is necessary to ensure that the indicators are independent of each

other. The Pearson correlation coefficient between the indicators was calculated using the utility in
PyGMI, an open-source software package (http://patrick-cole.github.io/pygmi/). The formula is
(Johnson, Wichern, 1998):

21, (X; —mean(X;))(Y; — mean(Y;))

I’ = 3
7 TR (X; — mean(X;))? /T, (V; — mean(Y;))? G)

where Xi and Yi are the two indicators being compared, and n is the sample size.

The correlation coefficients calculated for the indicators are very low, with closest to zero.
Higher correlations of 0.35 to 0.67 occurred between the drought index (MSVDI1, equation A.1)
and soil moisture index (NSMI, equation A.6), and LST and MSVDII1 also saw correlations
between 0.46 and 0.51. The correlation coefficients are low enough to assume that the data sets are
independent.

Weighting

Each indicator in the ecological security model must be given a weight. For this study, the
weights were derived from the data using principal component analysis. Each principal component
contains contributions from all the bands in the original data set, but they are uncorrelated with each
other and have variances equal to the eigenvalues of the covariance matrix (Johnson, Wichern,
1998). The eigenvectors of the covariance matrix are the principal components, with the first
component containing the most variance, followed by the second, third, and so on.
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By dividing each eigenvalue (principal component) by the sum of all eigenvalues, it is possible
to determine the percentage of variance (and therefore information) that a component contains. This
is called the contribution rate, and often only the first components which cumulatively contain 85 %
of the information are retained (Zou et al., 2021). Indicator weights are then calculated using the
following equations (Zou et al., 2021; Ding et al., 2018):

H; = Z *;l:'k: 4
k=1

where i is the indicator number and k is the number of retained principal components. lik is the
eigenvalue of indicator 1 with respect to principal component k. Hi is the variance of indicator 1.

w; = H:'r'ri H; (%)
i=1

where wi is the weight for indicator i, and n is the number of indicators.

Since PCA is data-driven, a set of weights is calculated for each year. The moisture indices
(NDMI, NMSI) and the percentage of economically active people consistently have zero weight
(Fig. 3). With a few exceptions, the weights are relatively consistent over the different years.
Exceptions are the impact of mining areas that had larger weights in 2001 to 2016 but decreased
significantly in 2018 and 2020, and rainfall that varied between 0.00026 in 2016 and 0.24944 in

2018.

PCA-2001 PCA-2014 PCA-2016 ----PCA-2018 ---PCA-2020

-+
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World population density
Evaporative stress index ‘
MSAVI2 in mining areas +
Tron pollution in mining
% population economically
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Fig. 3. Weights determined by the data-driven PCA method

Results and discussion
The results of the ecological security assessment were classified using natural break

classification to divide the data for each year into five natural groupings (Shao) et al., 2014) and
these were then assigned ecological security grades of very low, low, moderate, high, and very high
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(Fig. 4). The KOSH mining area consistently has the lowest ecological security. In 2001, the
southern and north-eastern regions of the municipality were also quite vulnerable. The security
improved in 2016 with only the mining areas showing very low security. This is an unexpected
result since 2016 experienced low rainfall, similar to 2001 and 2014. The vegetation health index
was higher for 2016 than for the previous years and was the source of the improved ecological
security. This index was most probably higher since the Landsat scene for 2016 was collected on 4
May, whereas the scenes for the other years were collected in late May and early June.

A new area with very low ecological security appeared in the northwest in 2018. It was still
present in 2020, but the extent decreased. Overall, the central belt of the municipality remained
ecologically secure from 2016 to 2020.

(a) VR SR B B b) R S R S
» | 4 June 2001 ' o | 31 May 2014 N
1 A LS e A B
5] 8 4 L]
L Ecolc;aical security Ecoloug,ical security
1 ] index =7 index
B oo005-0.192 Il 0.003-0.181
w 0.193 - 0.311 0.182-0.313
& 0.312-0.394 0.314 - 0.394
0.395 - 0.49 0.395 - 0.487
B o491-0663 [l o488-05664
| |
— —
() , | ®PE A WWEAEEE (@ | *[5F, PR WPE
o | 4 May 2018 N o | 26 May 2018 N
g ALE -2 — A LB
8 L S 8
® ® o @
£ 2 £ g
& Ecological security & Ecological security
1 index 1 Findex
B 0.003-0.176 B o.048-0319
® 0.177-0298 4 0.32-0.413
K] 02990404 & | 0.414-0.493
0.405 - 0.502 0.494 - 0.593
[l 05030663 Il o0-594-0.754
| |
——7————1—— .
2615E 26°I0°E 26"45E
(e} . . ] . . ] . . ] . .
7 N
o 31 May 2020 A o
E’ : E Kilometres
] °| 1|° 2|° 3|° Ecaloglcal security grading
] I Very low
§_ 2 Low
w
] Ecological security Moderate
1 index .
High
B oo004-0322 .
p 0.323 - 0.41 Il Very high
N | 0.411-0.505
0.506 - 0.608
B os09-0755
|

I 26"‘5'E — ZG%O'E I I 25‘55'E I

Fig. 4. Ecological security assessment models for the Matlosana Municipality using weights determined
from PCA
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The PCA-weighted model shows between 13 % and 30 % of the municipality to have very high
ecological security and a further 20 % to 25 % with high security (Fig. 5). These areas fall
predominantly in the central section of the region and correspond to cultivated areas and grasslands.
In 2014, these areas covered 30 % of the area, compared to almost 40 % to 50 % in the other years.
From the rainfall, land surface temperature, and modified visible and shortwave drought index, we
know that this was a dry year, explaining the pressure on the ecological security index.
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Fig. 5. Area proportions of the different ecological security grades

20-35 % of the Matlosana Municipality has low to very low ecological security. The most
vulnerable areas are around the towns and mines, and it is clearly due to the mining activity and
population density pressure indicators. The areas with low ecological security are much more
widespread and are more related to the climactic conditions under which they occur. LULC maps
classified the south as mostly grasslands, but in the north, there is a mixture of farmlands and
grasslands.

Two areas of concern have become apparent from the modelling results. A highly vulnerable
area in the northwest of the municipality in 2018 appears to be due to low vegetation health index
values. The VHI increased in 2020 but the ecological security remained extremely low, albeit
within a smaller extent. The other area of interest is the southernmost tip of the municipality. Here,
the VHI is high and the reason for the vulnerability is unclear.

Conclusions
The first ecological security assessment model developed for the Matlosana Municipality

identified areas with low security. However, during the modelling process, the following factors
affecting the modelling outcome were identified:

¢ Cloud-free scenes for the same time over the study period were only available for times after
the rainy season when vegetation is already decreasing and crops have been harvested;

e The limited number of spectral bands available in Landsat data leads to ambiguity in some of
the indices that were calculated;

e The LULC classification yielded many misclassifications;

e The Landsat scenes used in the temporal study must be collected as close as possible to the
same date of each year to avoid seasonal changes affecting the result.

Despite these factors, the process of developing and implementing an ecological security
assessment model is now well understood, and once these factors have been addressed, the model
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can be adapted if required and rerun. The effect of different indicators can be tested, and modelling
can also be applied to other areas.
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Appendix
Modified visible and shortwave infrared drought index (Sun et al., 2021):
MVSDIL =1 — ((SWIR2 — Blue) + (SWIR1 — Blue) + (Red — Blue)) (A1)
Vegetation health index (Bento et al., 2018):
VHI = aVCI+ (1 — «)TCI (A.2)
where & is the contribution of each condition index to the VHI. This is normally unknown and a
value of 0.5 is commonly used.
VI = m (A.3)
VI max VI min '
where VI is a vegetation index, and VImax and VImin are the minimum and maximum values of
the VI for a pixel over the observation period.
LST,, .. — LST
TCI = LST... — ST (A4)
where LSTmax and LSTmin are the minimum and maximum values of land surface temperature

for a pixel over the observation period.
Normalised difference moisture index (Zhang et al., 2016):

NDMI — NIR — SWIR1 (A.5)
~ NIR + SWIR1 '
Normalised difference soil moisture index (Haubrock et al., 2008):
SWIR1 — SWIRZ2
_ A.6
NSMI SWIR1 + SWIRZ (4.6)
Evaporative stress index (Qiu et al., 2021):
Eil=1 (ET ) A
B PET (A7)

where ET is evapotranspiration and PET is potential evapotranspiration provided by MODIS.
Modified soil adjusted vegetation index (Qi et al., 1994):

MSAVIZ = 0.5 [2NIR+ 1 —/(2NIR + 1)> — 8(NIR — RED)| (A.8)
Iron oxide ratio:
NIR
FeO = (A.9)
Green

References

1. Bai X., Tang J. Ecological security assessment of Tianjin by PSR model. Procedia Environmental Sciences, 2010.
Vol. 2, P. 881-887. https://doi.org/10.1016/j.proenv.2010.10.099.

2. Bento V. A., Trigo L. F., Gouveia C. M., DaCamara C. C. Contribution of Land Surface Temperature (TCI) to
Vegetation Health Index: A comparative study using clear sky and all-weather climate data records. Remote
Sensing, 2018. Vol. 10, No. 9, 1324. https://doi.org/10.3390/rs10091324.

24



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Annual Report 2020-2021. City of  Matlosana, 2021, 456 pp- Available at:
https://www.matlosana.gov.za/AnnualReportss.html.

Cole J., Sogayise S., Dudumashe N. An overview of vegetation health in the North West Province, South Africa,
between 2010 and 2020. IOP Conference Series: Earth and Environmental Science, 2021. 932, 012004.
https://doi.org/10.1088/1755-1315/932/1/012004.

Ding Q., Shi X., Zhuang D., Wang Y. Temporal and spatial distributions of ecological vulnerability under the
influence of natural and anthropogenic factors in an eco-province under construction in China. Sustainability. 2018
Vol. 10, No. 9. https://doi.org/10.3390/sul0093087.

Freedman B. Environmental Science: A Canadian Perspective. Dalhouse University Libraries Digital Editions,
Halifax, NS, Canada, 1998, 885 pp. Available at: https://ecampusontario.pressbooks.pub/environmentalscience/
Funk C., Peterson P., Landsfeld M., Pedreros D., Verdin J., Shukla S. et el. The climate hazards infrared
precipitation with stations - a new environmental record for monitoring extremes. Scientific Data, 2015. Vol. 2,
150066. https://doi.org/10.1038/sdata.2015.66.

Haubrock S. N., Chabrillat S., Lemmnitz C., Kaufmann H. Surface soil moisture quantification models from
reflectance data under field conditions. International Journal of Remote Sensing, 2008. Vol. 29, No. 1. P. 3-29
https://doi.org/10.1080/01431160701294695.

Johnson R. A., Wichern D. W. Applied Multivariate Statistical Analysis. Prentice Hall, New Jersey, 1998. 816 pp.
http://dx.doi.org/10.2307/2533879.

Linster M., Fletcher J. Using the Pressure-State-Response Model To Develop Indicators of Sustainability.
Organization for Economic Co-operation and Development, Paris, 2001 P.1-11. Available at:
http://www.oecd.org/env/soe/.

NWDC Quarterly Economic Data Report (EDR), Quarter 2 of 2015/2016. NWDC Research and Innovation Unit,
2015. Available at: https://nwdc.co.za/economic-data-reports/.

NWDC Quarterly Economic Data Report (EDR), Quarter 2 of 2017/2018. NWDC Research and Innovation Unit,
2017. Available at: https://nwdc.co.za/economic-data-reports/.

NWDC Quarterly Economic Data Report (EDR), Quarter 2 of 2018/2019. NWDC Research and Innovation Unit,
2018 Available at: https://nwdc.co.za/economic-data-reports/.

NWDC Quarterly Economic Data Report (EDR), Quarter 2 of 2021/2022. NWDC Research and Innovation Unit,
2021. Available at: https://nwdc.co.za/economic-data-reports/.

NWDC Quarterly Economic Data Report (EDR), Quarter 3 of 2021/2022. NWDC Research and Innovation Unit,
2021. Available at: https://nwdc.co.za/economic-data-reports/.

Qi J., Chehbouni A., Huete A. R., Kerr Y. H., Sorooshian S. A modified soil adjusted vegetation index. Remote
Sensing of Environment, 1994. Vol. 48, No. 2. P. 119-126. https://doi.org/10.1016/0034-4257(94)90134-1.
QiuL.,Chen Y., Wu Y., Xue Q., Shi Z., Lei X. et el. The Water Availability on the Chinese Loess Plateau since the
Implementation of the Grain for Green Project as Indicated by the Evaporative Stress Index. Remote Sensing, 2021.
Vol. 13, No.16, 3302. https://doi.org/10.3390/rs13163302.

Running S., Mu Q., Zhao M. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid
V006 NASA EOSDIS Land Processes DAAC. 2017. https://doi.org/10.5067/MODIS/MOD16A2.006.

Shao H., Liu M., Shao Q., Sun X., Wu J., Xiang Z. et al. Research on eco-environmental vulnerability evaluation of
the Anning River Basin in the upper reaches of the Yangtze River. Environmental Earth Sciences, 2014. Vol. 72
P.1555-1568. https://doi.org/10.1007/s12665-014-3060-9.

Statistics South Africa 2011. Census 2011 - Provincial profile: North West. Report no. 03-01-75, Statistics South
Africa, Pretoria. Available at: http://www.statssa.gov.za/publications/Report-03-01-75/Report-03-01-75201 1.pdf.
Sun H., Liu H., Ma Y., Xia Q. Optical remote sensing indexes of soil moisture: Evaluation and improvement based
on aircraft  experiment  observations. Remote  Sensing, 2021. Vol.13,  No. 22, 4638.
https://doi.org/10.3390/rs13224638.

Wang W., Sun. Y, Wu J. Environmental warning system based on the DPSIR model: A practical and concise
method for  environmental assessment. Sustainability, 2018. Vol. 10, No. 6, 1728.
https://doi.org/10.3390/sul0061728.

Longstaff B.J., Carruthers T.J.B., Dennison W.C., Lookingbill T.R., Hawkey J.M., Thomas J.E. et al. Integrating
and applying science: A handbook for effective coastal ecosystem assessment. IAN Press, Cambridge, Maryland,
2010. P. 61-77. Available at: https://ian.umces.edu/publications/integrating-and-applying-science-a-handbook-for-
effective-coastal-ecosystem-assessment/.

The spatial distribution of population in 2018, South Africa. WorldPop. Global High Resolution Population
Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076).
https://dx.doi.org/10.5258/SOTON/WP00645.

Zhang K., Thapa B., Ross M., Gann D. Remote sensing of seasonal changes and disturbances in mangrove forest: A
case study from South Florida. Ecosphere, 2016. Vol. 7, No. 6, P. 1-23. https://doi.org/10.1002/ecs2.1366.

Zou T., Chang Y., Chen P., Liu J. Spatial-temporal variations of ecological vulnerability in Jilin Province (China),
2000 to 2018. Ecological Indicators, 2021 Vol. 133, 108429. https://doi.org/10.1016/j.ecolind.2021.108429.

25


https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.3390/su10061728

