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Land cover is one of the most important environmental variables used to describe natural ecosystems. 

Constant changes on the Earth’s surface create the need for new, up-to-date, and accurate land cover 
maps. During the last decades, remote sensing products have been used in conjunction with field measure-
ments for the production of land cover maps in a cost-efficient manner. The aim of the present study was 
the development of a method for reliable on-the-fly land cover mapping using the Random Forest classifier 
and Sentinel-2 multispectral imagery on the Google Earth Engine cloud platform. The Random Forests al-
gorithm was employed, and two classification schemes were adopted, one using the original 44 land cover 
classes used by the CORINE land cover product, and one using five general land cover classes (Artificial 
surfaces, Agricultural areas, Forest and semi-natural areas, Wetlands, and Water bodies), resulting in the 
generation of two land cover maps. The 2018 CORINE land cover product was used to identify training 
samples and validate the resulting land cover maps. The results showcased that the 44-class land cover 
map had an overall accuracy of 72.85% and the 5-class land cover map 88.32%. Overall, the results of this 
research indicate the capability of Random Forest algorithm in the reliable land cover classification.  
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Pixel-based classification 
Introduction 

Land cover type is highly correlated with the biophysical properties of an area, and thus it is 

considered one of the most important environmental variables (Mason et al., 2003). Natural pro-

cesses on the Earth’s surface have a notable impact on climate, biodiversity, and the ecosystems 

ability to fulfill the needs of the modern human society (Mahmood et al., 2014). Land cover map-

ping is essential for planning and management of natural resources, as well as modeling environ-

mental variables (Gómez et al., 2016). Traditionally, field measurements of land cover are consid-

ered as one of the most reliable land cover mapping techniques, however they are also costly, time

-consuming, and present spatial limitations (Friedl et al., 2002).  Additionally, constant changes in 

the Earth’s surface, often render the existing land cover maps obsolete, creating the need for new 

updated maps. These obstacles lead to shortages of up-to-date and reliable land cover maps, which 

limit management bodies in the decision-making process.  

In order to address this challenge, many scientists have investigated the potential of various 

classification algorithms to produce accurate land cover maps using satellite imagery (Anthony et 

al., 2007; Mahdianpari et al., 2018; Moser et al., 2012; Rodriguez-Galiano et al., 2012). One of the 

most commonly used  algorithms in land cover mapping is the Random Forests ensemble. Random 

Forests have been shown to provide high overall accuracy in complex land cover classification 

problems (Maxwell et al., 2019; Na et al., 2010; Pelletier et al., 2016; Stefanski et al., 2013; 

Waske and Braun, 2009).  

One of the challenges of using Random Forests is the preparation and set-up of the algorithm 

and the required software, as well as the input dataset preprocessing, and selecting and labeling the 

training samples. Currently, new cloud-based technologies offer easy access to data and large 

amounts of processing power to their users. Google Earth Engine (GEE) constitutes one of the 

most commonly used platforms which provides instant access to data and high processing power. 

Users can access GEE platform either from its online integrated development environment (IDE), 

or from the Application Program Interface (API) that is offered. Through GEE, users gain access 

to a large variety of datasets, including geospatial, satellite imagery, meteorological, census, etc. 

(Gorelick et al., 2017).  
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The aim of this study is to evaluate the effectiveness of Random Forest algorithm in land cover 

mapping, using Sentinel-2 multispectral data through the Google Earth Engine platform. The spe-

cific objectives are: 

 The implementation of a method for calling and filtering the Sentinel-2 imagery archive and 

calculating spectral indices used for land cover mapping. 

 The implementation of a method for training sample extraction from the Coordination of In-

formation on the Environment (CORINE) land cover dataset. 

 Land cover classification using the Random Forest algorithm. 

 The quantitative and qualitative evaluation of the results in terms of land cover map overall 

accuracy and implementation effort. 

 

Study area 

The study area is located at the northern part of Greece, around the city of Thessaloniki, ex-

tending from 41°54’54.81” to 40°53’62.74” North, and from 22°19’91” to 23°47’71.06” East (fig. 

1). The altitude ranges from sea level to 2,029 meters, and the surface area is 10,000 km2. The cli-

mate is typical Mediterranean, with warm and dry summers, and cool and wet winters. This partic-

ular area was chosen because of its wide variety of land cover classes. Agricultural, forested, and 

artificial surfaces can be found in different variations, making the study area a suitable location to 

test the land cover mapping capabilities of the Random Forests algorithm.  

Fig. 1. Study area: Thessaloniki, Greece 

 

Materials and methods 

Sentinel-2 data 

The satellite data that were used in this study included two images from Sentinel-2 MultiSpec-

tral Instrument (MSI). The first image was acquired on October 26th,2018 and the second on Au-

gust 31st,2020. Sentinel-2 imagery has a spatial resolution of 10, 20, and 60 meters (depending on 

the band), and a temporal resolution of 3-5 days depending on the location. The MSI instrument 

records spectral data in 13 bands ranging from the blue part of the electromagnetic spectrum (443 

nm) to the short-wave infrared (2,190 nm).  
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The acquired images were already preprocessed to level 2A, which means that the images had 

been geometrically, radiometrically, and atmospherically corrected using the Sen2Cor algorithm 

by the Sentinel team (Main-Knorn et al., 2017). 

 

CORINE data 

The CORINE Land Cover (CLC) inventory provided by the Copernicus Land Monitoring Ser-

vice was also used in this study (Büttner et al., 2004). The product is a thematic map with 44 land 

cover classes and a spatial resolution of 100 meters (fig. 2).  

Fig. 2. CORINE land cover map of the study area with 44 classes 
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 Additionally, a second map based on the CORINE product was constructed with the initial 

land cover classes summarized into five, namely Artificial surfaces, Agricultural area, Forest and 

semi-natural areas, Wetlands, and Water bodies (fig. 3). 

Fig. 3. CORINE land cover map of the study area with five classes 

 

This was performed in order to investigate the potential effect of the employed classification 

scheme on the classifier’s performance.  

 

Methodology 

The complete procedure of the 

methodology took part in GEE’s 

online code editor (https://

code.earthengine.google.com/). 

The steps followed are presented 

in the flowchart below (fig. 4). 

The Sentinel-2 images were 

initially filtered by location and 

date. More specifically, the loca-

tion filtering was carried out by 

setting a point in the study area 

and only keeping the Sentinel-2 

images that their extent intersect-

ed with this point. The date filter-

ing was done by limiting the im-

ages to ones that were acquired 

during 2018 and images that were 

acquired during 2020. The reason 

for that was to extract training 
Fig. 4. Flowchart of the methodology 
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samples from the 2018 image, label them accordingly using the CORINE land cover map using 

random points, and then validate the trained algorithm using again random points (different from 

the ones used for training) labeled by the CORINE land cover product. The 2020 image was used 

to employ the trained algorithm and provide a land cover map for 2020.  

The filtered images were then sorted in order of cloud cover using the Sentinel-2 metadata vari-

able “CLOUDY_PIXEL_PERCENTAGE” and the least cloudy images for 2018 and 2020 were 

eventually selected. Next, a cloud and shadow mask was applied to the selected images by using 

the cirrus band and the cloud mask provided with Sentinel-2 2A level products.  

After the examination of several spectral indices, BSI (Bare Soil Index), NDVI (Normalized 

Difference Vegetation Index), NDWI (Normalized Difference Water Index), and MCARI 

(Modified Chlorophyll Absorption in Reflectance Index) were selected to participate in the classi-

fication process (table 1). 
Table 1 

Spectral indices calculated 

Index name Formula Citation 

BSI (( 6+ 4)−( 5+ 2))/(( 6+ 4)+( 5+ 2)) (Li and Chen, 2014) 

NDVI (( 8 − 4))/(( 8+ 4)) (Rouse Jr et al., 1974) 

NDWI (( 8 − 11))/(( 8+ 11)) (Gao, 1996) 

MCARI [( 5 − 4)−0.2 ∗( 5 − 3)] ∗( 5/ 4) (Wu et al., 2008) 

After the index calculation, 1000 random pixel samples were extracted from the 2018 Sentinel-

2 image, labeled using the CORINE land cover map, and then the Random Forests algorithm was 

trained using 650 trees. Afterwards, 2000 random pixels (different from the ones used for training) 

were then selected in order to validate the classification accuracy using the CORINE land cover 

map. The validation was performed by GEE’s native error matrix construction functions and the 

overall accuracy was calculated. 

Finally, a land cover map was produced using as input the 2020 Sentinel-2 image to the trained 

algorithm. This methodology process was repeated two times, using the 44-class and the 5-class 

CORINE land cover map, respectively.  

 

Results & discussion 

The produced land cover maps are presented below (fig. 5, fig. 6):  

Fig. 5. Resulting 5-class land cover map produced by employing the Random Forests algorithm                                
on the Sentinel-2 2020 image  
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Fig. 6. Resulting 44-class land cover map produced by employing the Random Forests algorithm                   
on the Sentinel-2 2020 image 

 

The overall accuracies for the 5-class and the 44-class land cover maps were 88.32% and 

72.85% respectively. Below, a comparison between each map and the corresponding original 

CORINE land cover map is presented (fig. 7, fig. 8).  

Fig. 7. The resulting 5-class land cover map (left) and the original 5-class CORINE land cover map (right) 
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Fig. 8. The resulting 44-class land cover map (left) and the original 44-class CORINE land cover map (right) 

 

It is obvious, that even though the overall accuracies of the resulting maps are quite high, and 

the general spatial distribution of the classes is correct, the fine details are lost. This classification 

error can be attributed to the fact that the spatial resolution of the CORINE land cover product is 

100 meters, while Sentinel-2 spatial resolution is 10 meters. This could cause a problem in areas 

where a CORINE 100m pixel contains two different land cover classes. In these cases, only the 

value of the dominant class is given, while the spectral features recorded by Sentinel-2 are hetero-

geneous inside the confines of the CORINE pixel. Another issue with this classification is the fact 

that the distribution of classes was not taken into consideration. This means that since the training 

samples were selected randomly, minority classes (i.e. Wetlands) were not guaranteed to be part of 

the training samples.  

One of the benefits of this methodology is that it can be used from any workstation with access 

to the internet and with no special preparation or special hardware requirements. Also, there is no 

need for downloading the required datasets since the whole procedure takes place in Google’s re-

mote servers. Another benefit of the methodology is its’ time-efficiency since a Sentinel-2 tile can 

be classified in under a minute. This gives the ability to land managers to have a general idea of 

the spatial distribution of land covers in an area where no up-to-date land cover maps are availa-

ble.  

 

Conclusions 

In this study, a method for calling the Sentinel-2 imagery archive and calculating spectral indi-

ces for land cover mapping was implemented. A method for training sample extraction from the 

CORINE land cover dataset was applied and a land cover classification using the Random Forest 

algorithm was performed. A method for confusion matrix construction and overall accuracy esti-

mation was also employed for the validation of the classification results. Finally, a quantitative and 

qualitative evaluation of results in terms of land cover map accuracy and implementation effort 

was conducted.  

The results showcased that produced maps had relatively high overall accuracy, but closer in-

spection of the maps revealed that there were some issues with the classification. For example, 

while the general class distribution was correct, the fine details of the land cover distribution were 

lost. This method provides the ability to land managers to trade between availability and accuracy. 

If an accurate and reliable land cover map is available there is no need to use this method, but 

when there is no such product, this method can rapidly generate a land cover map that represents 

the general spatial distribution of land cover in an area. More specifically: 
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 Using the Random Forest algorithm on Sentinel-2 imagery and CORINE land cover maps on 

Google Earth Engine cloud platform, greatly decreases the time needed for land cover map-

ping. 

 Using the Random Forest algorithm on Sentinel-2 imagery and CORINE land cover maps on 

Google Earth Engine cloud platform, still produces comparable results to other land cover 

mapping products. 

Future research could include the use of other machine learning classification techniques (i.e. 

Deep Learning) and Sentinel-2 imagery on Google Earth Engine. A different training set other 

than CORINE land cover map, or even different optical satellite datasets with higher resolution 

(i.e. WorldView). Finally, other types of remote sensing data like LiDAR or SAR could be investi-

gated in combination with the above-mentioned methods.  

 
This work was carried out in the Laboratory of Forest Management and Remote Sensing, in the 

School of Forestry and Natural Environment, in Aristotle University of Thessaloniki. The lead author 
(Stefanos Papaiordanidis) would like to thank Professor Ioannis Gitas for the helpful discussion and 
their insightful comments.  

The European Commission support for the production of this publication does not constitute an en-
dorsement of the contents which reflects the views only of the authors, and the Commission cannot be 
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