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Land cover is one of the most important environmental variables used to describe natural ecosystems.
Constant changes on the Earth’s surface create the need for new, up-to-date, and accurate land cover
maps. During the last decades, remote sensing products have been used in conjunction with field measure-
ments for the production of land cover maps in a cost-efficient manner. The aim of the present study was
the development of a method for reliable on-the-fly land cover mapping using the Random Forest classifier
and Sentinel-2 multispectral imagery on the Google Earth Engine cloud platform. The Random Forests al-
gorithm was employed, and two classification schemes were adopted, one using the original 44 land cover
classes used by the CORINE land cover product, and one using five general land cover classes (Artificial
surfaces, Agricultural areas, Forest and semi-natural areas, Wetlands, and Water bodies), resulting in the
generation of two land cover maps. The 2018 CORINE land cover product was used to identify training
samples and validate the resulting land cover maps. The results showcased that the 44-class land cover
map had an overall accuracy of 72.85% and the 5-class land cover map 88.32%. Overall, the results of this
research indicate the capability of Random Forest algorithm in the reliable land cover classification.

Keywords: Land cover mapping, Sentinel-2, Google Earth Engine, Random Forest, Remote sensing,
Pixel-based classification
Introduction

Land cover type is highly correlated with the biophysical properties of an area, and thus it is
considered one of the most important environmental variables (Mason et al., 2003). Natural pro-
cesses on the Earth’s surface have a notable impact on climate, biodiversity, and the ecosystems
ability to fulfill the needs of the modern human society (Mahmood et al., 2014). Land cover map-
ping is essential for planning and management of natural resources, as well as modeling environ-
mental variables (Gomez et al., 2016). Traditionally, field measurements of land cover are consid-
ered as one of the most reliable land cover mapping techniques, however they are also costly, time
-consuming, and present spatial limitations (Friedl et al., 2002). Additionally, constant changes in
the Earth’s surface, often render the existing land cover maps obsolete, creating the need for new
updated maps. These obstacles lead to shortages of up-to-date and reliable land cover maps, which
limit management bodies in the decision-making process.

In order to address this challenge, many scientists have investigated the potential of various
classification algorithms to produce accurate land cover maps using satellite imagery (Anthony et
al., 2007; Mahdianpari et al., 2018; Moser et al., 2012; Rodriguez-Galiano et al., 2012). One of the
most commonly used algorithms in land cover mapping is the Random Forests ensemble. Random
Forests have been shown to provide high overall accuracy in complex land cover classification
problems (Maxwell et al., 2019; Na et al., 2010; Pelletier et al., 2016; Stefanski et al., 2013;
Waske and Braun, 2009).

One of the challenges of using Random Forests is the preparation and set-up of the algorithm
and the required software, as well as the input dataset preprocessing, and selecting and labeling the
training samples. Currently, new cloud-based technologies offer easy access to data and large
amounts of processing power to their users. Google Earth Engine (GEE) constitutes one of the
most commonly used platforms which provides instant access to data and high processing power.
Users can access GEE platform either from its online integrated development environment (IDE),
or from the Application Program Interface (API) that is offered. Through GEE, users gain access
to a large variety of datasets, including geospatial, satellite imagery, meteorological, census, etc.
(Gorelick et al., 2017).
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The aim of this study is to evaluate the effectiveness of Random Forest algorithm in land cover
mapping, using Sentinel-2 multispectral data through the Google Earth Engine platform. The spe-
cific objectives are:

e The implementation of a method for calling and filtering the Sentinel-2 imagery archive and

calculating spectral indices used for land cover mapping.

e The implementation of a method for training sample extraction from the Coordination of In-

formation on the Environment (CORINE) land cover dataset.

e Land cover classification using the Random Forest algorithm.

o The quantitative and qualitative evaluation of the results in terms of land cover map overall

accuracy and implementation effort.

Study area

The study area is located at the northern part of Greece, around the city of Thessaloniki, ex-
tending from 41°54°54.81” to 40°53°62.74” North, and from 22°19°91” to 23°47°71.06” East (fig.
1). The altitude ranges from sea level to 2,029 meters, and the surface area is 10,000 km?. The cli-
mate is typical Mediterranean, with warm and dry summers, and cool and wet winters. This partic-
ular area was chosen because of its wide variety of land cover classes. Agricultural, forested, and
artificial surfaces can be found in different variations, making the study area a suitable location to
test the land cover mapping capabilities of the Random Forests algorithm.
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Fig. 1. Study area: Thessaloniki, Greece

Materials and methods

Sentinel-2 data

The satellite data that were used in this study included two images from Sentinel-2 MultiSpec-
tral Instrument (MSI). The first image was acquired on October 26™,2018 and the second on Au-
gust 31%,2020. Sentinel-2 imagery has a spatial resolution of 10, 20, and 60 meters (depending on
the band), and a temporal resolution of 3-5 days depending on the location. The MSI instrument
records spectral data in 13 bands ranging from the blue part of the electromagnetic spectrum (443
nm) to the short-wave infrared (2,190 nm).
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The acquired images were already preprocessed to level 2A, which means that the images had
been geometrically, radiometrically, and atmospherically corrected using the Sen2Cor algorithm
by the Sentinel team (Main-Knorn et al., 2017).

CORINE data

The CORINE Land Cover (CLC) inventory provided by the Copernicus Land Monitoring Ser-
vice was also used in this study (Biittner et al., 2004). The product is a thematic map with 44 land
cover classes and a spatial resolution of 100 meters (fig. 2).
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Fig. 2. CORINE land cover map of the study area with 44 classes
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Additionally, a second map based on the CORINE product was constructed with the initial
land cover classes summarized into five, namely Artificial surfaces, Agricultural area, Forest and
semi-natural areas, Wetlands, and Water bodies (fig. 3).
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Fig. 3. CORINE land cover map of the study area with five classes

This was performed in order to investigate the potential effect of the employed classification

scheme on the classifier’s performance.

Methodology

The complete procedure of the
methodology took part in GEE’s
online code editor (https:/
code.earthengine.google.com/).
The steps followed are presented
in the flowchart below (fig. 4).

Sentinel-2
2018 and 2020

3

Preprocessing

Cloud/shadows masking
‘ Filtering collection & spectral indices

The Sentinel-2 images were
initially filtered by location and
date. More specifically, the loca-
tion filtering was carried out by
setting a point in the study area
and only keeping the Sentinel-2
images that their extent intersect-
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Fig. 4. Flowchart of the methodology
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samples from the 2018 image, label them accordingly using the CORINE land cover map using
random points, and then validate the trained algorithm using again random points (different from
the ones used for training) labeled by the CORINE land cover product. The 2020 image was used
to employ the trained algorithm and provide a land cover map for 2020.

The filtered images were then sorted in order of cloud cover using the Sentinel-2 metadata vari-
able “CLOUDY PIXEL PERCENTAGE” and the least cloudy images for 2018 and 2020 were
eventually selected. Next, a cloud and shadow mask was applied to the selected images by using
the cirrus band and the cloud mask provided with Sentinel-2 2A level products.

After the examination of several spectral indices, BSI (Bare Soil Index), NDVI (Normalized
Difference Vegetation Index), NDWI (Normalized Difference Water Index), and MCARI
(Modified Chlorophyll Absorption in Reflectance Index) were selected to participate in the classi-

fication process (table 1).
Table 1
Spectral indices calculated
Index name Formula Citation
BSI ((B6+B4)—(B5+B2))/((B6+B4)+(B5+B2)) (Li and Chen, 2014)

NDVI ((B8 —B4))/((B8+B4)) (Rouse Jr et al., 1974)
NDWI (B8 —B11))/((B8+B11)) (Gao, 1996)

MCARI [(B5 —B4)—0.2 *(B5 —B3)] *(B5/B4) (Wu et al., 2008)

After the index calculation, 1000 random pixel samples were extracted from the 2018 Sentinel-
2 image, labeled using the CORINE land cover map, and then the Random Forests algorithm was
trained using 650 trees. Afterwards, 2000 random pixels (different from the ones used for training)
were then selected in order to validate the classification accuracy using the CORINE land cover
map. The validation was performed by GEE’s native error matrix construction functions and the
overall accuracy was calculated.

Finally, a land cover map was produced using as input the 2020 Sentinel-2 image to the trained
algorithm. This methodology process was repeated two times, using the 44-class and the 5-class

CORINE land cover map, respectively.

Results & discussion
The produced land cover maps are presented below (fig. 5, fig. 6):
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Fig. S. Resulting 5-class land cover map produced by employing the Random Forests algorithm
on the Sentinel-2 2020 image
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Fig. 6. Resulting 44-class land cover map produced by employing the Random Forests algorithm
on the Sentinel-2 2020 image

The overall accuracies for the 5-class and the 44-class land cover maps were 88.32% and
72.85% respectively. Below, a comparison between each map and the corresponding original

CORINE land cover map is presented (fig. 7, fig. 8).
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Fig. 7. The resulting 5-class land cover map (left) and the original S5-class CORINE land cover map (right)
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Fig. 8. The resulting 44-class land cover map (left) and the original 44-class CORINE land cover map (right)

It is obvious, that even though the overall accuracies of the resulting maps are quite high, and
the general spatial distribution of the classes is correct, the fine details are lost. This classification
error can be attributed to the fact that the spatial resolution of the CORINE land cover product is
100 meters, while Sentinel-2 spatial resolution is 10 meters. This could cause a problem in areas
where a CORINE 100m pixel contains two different land cover classes. In these cases, only the
value of the dominant class is given, while the spectral features recorded by Sentinel-2 are hetero-
geneous inside the confines of the CORINE pixel. Another issue with this classification is the fact
that the distribution of classes was not taken into consideration. This means that since the training
samples were selected randomly, minority classes (i.e. Wetlands) were not guaranteed to be part of
the training samples.

One of the benefits of this methodology is that it can be used from any workstation with access
to the internet and with no special preparation or special hardware requirements. Also, there is no
need for downloading the required datasets since the whole procedure takes place in Google’s re-
mote servers. Another benefit of the methodology is its’ time-efficiency since a Sentinel-2 tile can
be classified in under a minute. This gives the ability to land managers to have a general idea of
the spatial distribution of land covers in an area where no up-to-date land cover maps are availa-
ble.

Conclusions

In this study, a method for calling the Sentinel-2 imagery archive and calculating spectral indi-
ces for land cover mapping was implemented. A method for training sample extraction from the
CORINE land cover dataset was applied and a land cover classification using the Random Forest
algorithm was performed. A method for confusion matrix construction and overall accuracy esti-
mation was also employed for the validation of the classification results. Finally, a quantitative and
qualitative evaluation of results in terms of land cover map accuracy and implementation effort
was conducted.

The results showcased that produced maps had relatively high overall accuracy, but closer in-
spection of the maps revealed that there were some issues with the classification. For example,
while the general class distribution was correct, the fine details of the land cover distribution were
lost. This method provides the ability to land managers to trade between availability and accuracy.
If an accurate and reliable land cover map is available there is no need to use this method, but
when there is no such product, this method can rapidly generate a land cover map that represents
the general spatial distribution of land cover in an area. More specifically:
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o Using the Random Forest algorithm on Sentinel-2 imagery and CORINE land cover maps on
Google Earth Engine cloud platform, greatly decreases the time needed for land cover map-

ping.

e Using the Random Forest algorithm on Sentinel-2 imagery and CORINE land cover maps on
Google Earth Engine cloud platform, still produces comparable results to other land cover
mapping products.

Future research could include the use of other machine learning classification techniques (i.e.
Deep Learning) and Sentinel-2 imagery on Google Earth Engine. A different training set other
than CORINE land cover map, or even different optical satellite datasets with higher resolution
(i.e. WorldView). Finally, other types of remote sensing data like LiDAR or SAR could be investi-
gated in combination with the above-mentioned methods.

This work was carried out in the Laboratory of Forest Management and Remote Sensing, in the
School of Forestry and Natural Environment, in Aristotle University of Thessaloniki. The lead author
(Stefanos Papaiordanidis) would like to thank Professor loannis Gitas for the helpful discussion and
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