
46 

 

ASSESSMENT OF LAND SURFACE TEMPERATURE AND DROUGHT INDICES               
FOR THE KLERKSDORP-ORKNEY-STILFONTEIN-HARTEBEESFONTEIN                     

(KOSH) REGION 

Noluvuyo Dudumashe, Abraham Thomas 

Council for Geoscience, Pretoria 0184, South Africa. 

 

Land surface temperature (LST) is a key calculator of local climate, vegetation growth, and urban 
change. Spatial and temporal variation of LST over land use/land cover (LULC) features results in changes 
in environmental factors that influence the characteristics of the land surface. In this study, some remote 
sensing techniques have been applied to Landsat 8 data acquired during summer and spring seasons of 
years 2019, 2018, and 2013 to estimate normalized difference vegetation index (NDVI), LST, normalized 
difference built-up index (NDBI), three drought indices viz. vegetation supply water index (VWSI), crop 
water supply index (CWSI) and temperature condition index (TCI) and analysed the spatial-temporal 
trends in LST among major LULC of an arid part of North West Province of South Africa known as Klerks-
dorp-Orkney-Stilfontein-Hartebeesfontein (KOSH) region. The results shows that there is a direct negative 
relationship between LST and NDVI. The study compared three drought indices for monitoring the water 
scarcity of the area. The finding also indicates a positive relationship between LST and CWSI that is rele-
vant to soil moisture and NDBI. The findings from the study prove the capability of optical remote sensing 
in monitoring LST and drought in the region. The study reveals the usefulness of the remotely sensed data 
of Landsat 8 satellite in estimating LST and drought changes in the KOSH area. This study also tried to 
assess the usefulness of Landsat 8 bands in deriving vegetation index and drought indices for monitoring 
drought in the KOSH region during three years (2013, 2018 and 2019). 

 
Keywords: Landsat 8, land surface temperature, drought, remote sensing, vegetation and drought 

indices, climate change. 
 
Introduction 

Land surface temperature (LST) is the primary climatic parameter in calculating the surface 

radiation and the energy exchange (He et al., 2019). Climate change is one of the most critical 

challenges that the world faces. Many studies have reported that climate change has a significant 

effect on the land surface temperature and its other parameters (Brohan et al., 2006; Hansen et al., 

2010 ). Simó et al. (2016) stated that LST is also important for controlling the dynamics of the 

earth’s surface. Land use/land cover (LU/LC) and land surface temperature (LST) is the most im-

portant amid these parameters. Several researchers used LST for understanding changes in temper-

ature fluctuations which are major aspects that change the land use/land cover (Owojori and Xie, 

2005). LST is defined as the temperature felt when there is an exchange of long-wave radiation 

and turbulent heat fluxes within the surface-atmosphere interface. The LST is being increasingly 

used to evaluate climate change in urban zones. Several techniques previously have been applied 

for calculating land surface temperature through ground base data, but that is costly (Rehman et 

al., 2015).  LST is needed for better environmental monitoring and climate change mitigation. 

The time-series observations are frequently employed in monitoring approaches related to re-

mote sensing (RS) and LST. The application of time series in the assessment of the climate varia-

bility over an extended period can be improved by the integration of spatial data from multiple sat-

ellite systems (Kothe et al., 2019). The Landsat imageries are the most valuable source of spatial 

information at 30-m resolution (Herrero-Huerta et al., 2019). It is also useful in continuous global 

coverage to provide an opportunity to characterize human-scale processes (Chen et al., 2017). 

Chastain et al. (2019) stated that operational Landsat 8 (OLI & TIRS) could supply a revisit fre-

quency of 8 days at the equator. The Landsat sensors have a high spatial resolution helping in the 

monitoring of the urban thermal environment (XIAO et al., 2007a; Sobrino et al., 2012). Thermal 

infrared (TIR) bands are very important bands in estimating LST in an area and monitoring cli-

mate change. The USGS recommendation is not to use TIRS Band 11 due to its larger calibration 

uncertainty, only Band10 was used in the LST calculation. However, not every remote sensing 
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platform has the thermal-infrared bands on their sensor. 

 Ustin et al. (2004) stated that remote sensing must play a part in providing the data required to 

monitor the conditions and change of ecosystem at all spatial scales. This is an increasing field of 

environmental scientists. Therefore, acquiring LST from remotely sensed data becomes one of the 

important main factors for such studies. Torrion et al. (2014) outlined that LST is associated to 

surface energy fluxes, the latent heat flux, and evapotranspiration and water stress. According to 

Cammalleri and Vogt (2015), LST is connected to surface longwave emission and calculating soil 

moisture. Whereas Duan et al. (2014) stated that considering meteorological and hydrological pro-

cesses in a changing climate is the best parameter in estimating LST. The presented study aimed to 

estimate the LST using Landsat 8 images acquired during the year 2013, 2018, and 2019, to map 

and monitor the area for changes in LST and drought through drought monitoring indices viz. veg-

etation supply water index (VWSI), crop water supply index (CWSI) and temperature condition 

index (TCI), and to compare the results for these three years. 

 

Study area 

The Klerksdorp-Orkney-Stilfontein-Hartebeesfontein (KOSH) region was selected as a study 

area. The geographic location of the KOSH area is in the North West province of South Africa 

(fig. 1). The region comprises four districts, namely Klerksdorp, Orkney, Stilfontein, Harte-

beesfontein, covering an area of 2757 km2. The climate of the region is warm to hot summers 

(November to February/March) and cool, dry winters (May to August) are typical. KOSH region is 

part of the Witwatersrand gold mining area, underlain by sedimentary, extrusive, and intrusive 

rocks of Transvaal Super Group (Thomas, 2020). Figure 2 depicts the land use/land cover of the 

area showing that the most area is covered by the grassland cover.  

Fig. 1. Location map of Klerksdorp-Orkney-Stilfontein-Hartebeesfontein (KOSH) region 
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Fig. 2. Land use/ Land cover distribution of Klerksdorp-Orkney-Stilfontein-Hartebeesfontein (KOSH) area 
based on national land cover dataset 2013-2014 

 

Data and software used for the research 

Data used for remote sensing analysis 

In this study, the first step was downloading Landsat 8 satellite data (cloud cover of  0%) of 

KOSH region from the USGS Earth Explorer website (https://www.usgs.gov/). The level-1 prod-
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uct Landsat 8 data acquired during summer and spring seasons of three-years (2013, 2018, and 

2019) were searched. The images were georeferenced using ArcGIS software to the Universal 

Transverse Mercator (UTM) Projection System. The images of Landsat 8 (footprint: 171/079) was 

used in this study.  Satellite data were acquired over two different seasons (end of summer and the 

beginning of spring) for three different years to assess and monitor the study over time. Fig 3 

shows the extent of the spatial coverage with the study area and Table 1 shows the band details of 

the data used. Thermal bands (TIR) were used for the calculation of the land surface temperature 

(LST) without being pre-processed. The band 10 was used from Landsat 8 OLI due to larger cali-

bration uncertainty of band 11 found to have.  

 
Table 1 

 Landsat image characteristics used in this research (Source: NASA 2003, USGS 2015) 

Characteristics Landsat 8 OLI/TIRS 
Band number 30 m: 

Band 1- Coastal aerosol 

Band 2 – Blue 

Band 3 – Red 

Band 4 – Green 

Band 5 – NIR 

Band 6 – SWIR -1 

Band 7 – SWIR -2 

Band 9 – Cirrus 

15m: 

Band 8 – Pan 

100m: 

Band 10 - TIR -1 

Band 11 – TIR - 2 
Thermal band spectral range Band 10 (10,60 – 11,19 nm) 

Band 11 (11,50 – 12,51 nm) 
Acquisition dates Summer 

26/03/2013 

03/02/2018 

22/02/2019 

Spring 

02/09/2013 

15/09/2018 

02/09/2019 

The software used for this study were ArcGIS 10.4 version and ENVI 5.5 version. LST and 

Normalized satellite indices were calculated using the raster calculator tool of ArcGIS 10.4. The 

shapefile of respective areas were created and area of interest (AOI) was extracted using ArcGIS.  

 

Methodology  

Land surface temperature (LST) calculation is one of the steps to determine the drought on the 

Earth's surface. The remotely sensed images can be used to derive this information using algo-

rithms that are specifically developed to provide information using ‘RT’ – Real-time Terrain Cor-

rected dataset containing both OLI & TIRS bands. The three bands used in this study are band 4, 

band 5 and thermal band 10. The thermal band 10 of this dataset was not processed for atmospher-

ic correction and surface reflectance retrieval for land surface temperature; however, the red and 

near-infrared bands (bands 4 and 5) were pre-processed using ENVI software for atmospheric cor-

rection. Later NDVI values were calculated in ENVI software using the red and near-infrared 

bands. 
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Equations used to calculate Land Surface Temperature with Landsat 8 satellite images 

TOA (Lλ) spectral transmittance 

The first step in computing LST is to transform the DN of the thermal infrared band into spec-

tral radiance (Lλ) by using the following equation obtained from the Landsat user’s handbook. The 

reason for transforming the DN was to calibrate for the produced noise from the sensors, which 

measure the reflectance from the Earth's surface in the form of Digital Numbers (DN) representing 

each pixel. 

,                                                    (1) 

where ML is the band specific multiplicative rescaling factor from the metadata, AL is the band 

specific additive scaling factor and Qcal represents the symbolized values of quantized and cali-

brated standard product pixels (D). The DN of Landsat 8 of band 10 images were converted to 

spectral radiance, using the above equation which is given by Rosas et al. (2017). 

 

Brightness Temperature 

The second step is to convert the band radiance into brightness temperatures (TB) in Celsius 

using a conversion formula given below (equation 2). The TIR data values of band 10 were con-

verted to brightness temperatures (  ), which is the microwave radiance travelling upward from 

the top of Earth’s atmosphere, using the thermal constants provided in the metadata file (Yang et 

al., 2014). To achieve accuracy for the    conversion, equation 2 was implemented through the 

ATCOR module of ArcGIS. The result in Kelvin was converted to Celsius by adding the absolute 

zero. 

Fig. 3. Preview images of the used data of 2019, 2018, and 2013  to see the extent of spatial coverage                      
with the extent of the study area 
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TB = (K2 / (ln (K1 / L) + 1)) − 273.15 ,                                          (2) 

where TB is the satellite brightness temperature in Celsius, and K1 and K2 represent thermal con-

version from the metadata (Suresh et al., 2016). Table 2 shows the constants K1 and K2 used for 

the Landsat satellites. 

 
Table 2 

Constants K1 and K2 for the Landsat satellites 

Constant Landsat 8 (Band 10) Landsat 8 (Band 11) 

K1 (watt/meter squared *ster*) 774.89 480.89 

K2(Kelvin) 1321.08 1201.14 

Rescaling 
ML 0.0003342 

AL 0.10 

Table 3 
Center wavelength for Landsat satellites. 

Satellite Band Center Wavelength 

Landsat (OLI) 8 10 10.8 

Landsat (OLI) 8 11 12 

Normalized Difference Vegetation Index (NDVI) 

NDVI is an indicator used to analyse the greenness of the observed area. As Weng et al. (2004) 

stated, estimating NDVI is essential since the amount of vegetation present is a factor for LST re-

trieval. NDVI is calculated using the following equation/formula: 

  ,            (3) 

where NDVI values range between −1 and 1. 

 

Proportion of Vegetation Cover 

Following the NDVI calculation, the vegetation index ( Pv ) was calculated according to the 

equation as described by XIAO et al. (2007b). According to Jin et al. (2015) and Quintano et al. 

(2015), the proportion of vegetation (Pv) is computed by using soil and vegetation NDVI values 

calculated by Equation 4: 

Pv = Square ((NDVI – NDVImin) / (NDVImax – NDVImin)),                             (4) 

where NDVI is the normalized difference vegetation index. NDVImin and NDVImax are the minima 

and maximum values of the NDVI (Sobrino and Romaguera, 2004).  

 

Estimation of emissivity 

The land surface emissivity was derived from the NDVI as proposed by Ngie et al. (2017). Ac-

cording to Pal and Ziaul (2017), the Ground Emissivity ( ) values are calculated using equation 5:  

ε = m* Pv + 0.986 ,                         (5) 

where m=0,004 and n=0,986. PV is the proportion of vegetation extracted from equation (4). 

 

Land Surface Temperature 

The Land surface temperature (LST) is estimated from the brightness temperature (TB). For 

estimating brightness temperatures (TB), it is assumed that the Earth is a blackbody, which is not, 

and this assumption can lead to some errors in surface temperature (Ogunode and Akombelwa, 

2017). To minimize these errors, emissivity correction is important and this correction applied to 

equation 2 to retrieve the LST from TB:  
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                  LST = (TB / (1 + (0.00115 * TB / 1.4388) * Ln(ε))) .                            (6) 

The main data processing steps (workflow) to be followed for data analysis using a GIS or a 

remote sensing software for retrieving LST from the Landsat 8 data is shown in figure 4.  

Fig. 4. LST retrieval flowchart 

 

Normalized Difference Built-up Index 

The NDBI is an index which is used to detect built-up area from other LULC types.  The value 

of the NDBI is between -1 and 1, where the negative values indicate water body and positive value 

represent areas that have higher built up and other paved surface areas; whereas zero NDBI values 

represent areas covered with vegetation (Balew and Korme, 2020). This index can be computed as:  

NDBI = BSWIR – BNIR/BSWIR + BNIR ,         (7) 

where BSWIR is shortwave infrared band reflectance (band 6 of Landsat 8). 



53 

 

Drought indices: temperature condition index (TCI), crop water stress index (CWSI) and vege-

tation water supply index (VSWI) 

Three drought indices were computed in this study to compare the drought in three different 

years. The first drought indices were calculated using the Temperature Condition Index (TCI) al-

gorithm.  Temperature Condition Index (TCI) is an algorithm developed by Kogan (1998) for de-

tecting drought by viewing the difference from the surface temperatures level resulting in water-

saturated soil, which affects vegetation stress level (Equation 8).  

Secondly, we calculated the drought using the crop water stress index (CWSI) to identify areas 

where the crops are under water stress. Crop Water Stress Index (CWSI) is a technique for detect-

ing drought due to water lost through evapotranspiration (Equation 9). Lastly, the vegetation sup-

ply water index (VSWI)  calculated by dividing NDVI values with LST values (equation 10) was 

also used in identifying areas with drought.  The three drought indices have an opposite index val-

ue explanation; zero in TCI indicates drought condition, but the wet condition in CWSI. The last 

index vegetation water supply index was used. Vegetation supply water index is the water supply 

in the vegetation. The reason for using the three indices was to compare the drought results and see 

if the algorithm can identify the same area with drought. 

TCI = (LSTmax-LST/LSTmax-LSTmin)*100 ,                                       (8) 

CWSI = LST-LSTmin/LSTmax-LSTmin ,                                           (9) 

VSWI= NDVI/LST .                                                        (10) 

Statistical analysis  is very important to analyse different variables. In this study, descriptive 

statistical analysis was applied for analysing LST, NDVI and NDBI for each study period. The 

results from this statistical analysis mainly show the mean, minimum, maximum and standard de-

viation of the calculated indices for different periods of study. 

 

Results and discussion 

The spatial-temporal pattern of Normalised difference vegetation index 

Figure 5 and figure 6 show the spatial distribution/variation of NDVI values for the summer/

spring periods of the year 2013,  2018 and 2019. The most affected areas are in the northern, mid-

dle, western and central parts of KOSH. Particularly the middle region of the KOSH shows an ex-

treme drought condition. Results presented in figure 5 (summer 2013, 2018 and 2019), indicate 

that NDVI values observed were ranged from −0.27 to 0.64. Most areas of the KOSH had low 

NDVI because of low vegetation cover and high vegetation in areas with vegetation. However, 

places seen to the east of KOSH had lower NDVI values because the area's lack of vegetation cov-

er and bare surfaces dominate the area 2018. In 2013, the maximum NDVI value was 0.57 and a 

minimum of -0.33 and with a mean of 0.17. However, the minimum, maximum and mean NDVI 

values in 2018 were increased to -0.27, 0.64, and 0.25. Furthermore, in the year 2019, the maxi-

mum NDVI was 0.63 but in the spring of 2019, it was declined to 0.59 (fig 6), while the mean de-

creased from 0.08 to 0.04 (table 4).  

 
Table 4 

Statistical summary of NDVI values in KOSH (2013, 2018 and 2019). 

Year Mean Max Min STD 
2013 Summer 0.17 0.57 -0.33 0.04 
2013 Spring 0.11 0.56 -0.41 0.03 

2018 Summer 0.25 0.64 -0.27 0.07 
2018 Spring 0.13 0.60 -0.30 0.03 

2019 Summer 0.29 0.63 -0.29 0.08 
2019 Spring 0.14 0.59 -0.32 0.04 
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Fig. 5. Spatial-temporal pattern of NDVI dynamics of KOSH during the summer seasons of the year                    
(a) 2013, (b) 2018, and (c) 2019 

а) 

b) 

c) 
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Fig. 6. Spatial-temporal pattern of NDVI dynamics of KOSH during the spring season of the year                       

(a) 2013, (b) 2018 and (c) 2019  

а) 

b) 

c) 
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The spatial-temporal pattern of Land Surface Temperature 

Figure 7 and figure 8  shows the spatial pattern results of LST and Table 5 shows statistical in-

formation.  The green colour indicates that the areas have very low temperatures with certain land 

cover such as; the body of water, woodlands and area of shadows, or clouds (fig. 7 and fig. 8). On 

the three images selected in summer the north-west, south-west, northeast and east-south parts ex-

perienced higher LST ranging from 25.09 – 36.83 and in the areas with lower LST it ranges from 

15.44 – 26.25. However, in some grassland areas, the LST ranges from 22.54 to 29.56. In spring 

results, 2013 and 2019 the maps show close similarity results than the results of 2018. LST value 

is high in most of the area because the area is mostly covered by short grass. In the spring season, 

high values are seen because the grass is very short and dry. The south-east part of the area is cov-

ered with water (river) and vegetation (crops/woodlands) so those areas have low LST and high 

NDVI values. The western and southwest part with grassland show high values of LST. NDVI has 

a negative correlation with LST meaning that the higher the NDVI the lower the LST. Similarly. 

In areas of the higher LST values, one can find lower NDVI values. There is a decrease in the val-

ues of statistical parameters between the season in all three years because of the difference in the 

climate of these seasons. The finding proves that where the region has high vegetation cover, the 

land surface temperature is less in such regions and where there is lesser vegetation cover, then the 

land surface temperature is higher. 

 
Table 5 

Statistical summary of LST (℃) values in KOSH and its surrounding (2013, 2018 and 2019) 

Year Mean Max Min STD 

2013 Summer 23.35 34.23 15.44 1.32 

2013 Spring 22.44 34.07 9.14 1.97 

2018 Summer 37.61 48.39 18.80 1.22 

2018 Spring 34.72 94.97 18.37 2.53 

2019 Summer 28.90 35.91 21.06 1.49 

2019 Spring 27.73 41.35 15.44 1.95 

The spatial-temporal pattern of Normalised Difference Built Index (NDBI) 

Results indicate that during the year 2013 summer, the Normalised Difference Built Index 

(NDBI) values ranged from − 0.45 to 0.27 with the lowest temperature and highest temperature of 

0 and 100 °C (fig. 9). In the year 2018, summer the NDBI values ranged from − 0.54 to 0.33 with 

the lowest temperature and highest temperature being 0 and 100 °C respectively (fig. 9). Whereas 

in the year 2019 the NDBI values ranged from -0.49 to 0.26. However, for the spring season in 

2013, the range of NDBI is from -0.46 to 0.30, in the year 2018 it is between -0.46 to 0.73, and in 

the year 2019, it ranged between -0.48 to 0.27 (fig. 10). NDBI has a positive correction with LST 

that is the lower the NDBI the lower the LST and the higher the NDBI indicate higher the LST. In 

the study, there was a positive relationship between NDBI and LST. According to Faris and Reddy 

(2010), Built-up land plays the biggest role in increasing the temperature because of the hard con-

crete surface which contains almost nil water storage which leads to less humidity also. 
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Fig. 7. Spatial-temporal pattern of LST dynamics of KOSH during the summer season of the year                       
(a) 2013, (b) 2018 and (c) 2019  

а) 

b) 

c) 
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Fig. 8. Spatial-temporal pattern of LST dynamics of KOSH during the spring season of the year                         
(a) 2013, (b) 2018 and (c) 2019  
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Fig. 9. Spatial-temporal pattern of NDBI dynamics of KOSH during the summer season of the year                     
(a) 2013, (b) 2018, (c) 2019 

а) 

b) 

c) 
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Fig. 10. Spatial-temporal pattern of NDBI dynamics of KOSH during the spring season of the year                      
(a) 2013, (b) 2018 and (c) 2019 



61 

 

Table 6 
Statistical summary of NDBI values in KOSH and its surrounding (2013, 2018 and 2020) 

Year Mean Max Min STD 

2013 Summer 0.05 0.27 -0.45 0.05 

2013 Spring 0.11 0.30 -0.46 0.04 

2018 Summer -0.00 0.33 -0.54 0.08 

2018 Spring 0.11 0.73 -0.46 0.04 

2019 Summer -0.04 0.26 -0.49 0.08 

2019 Spring 0.08 0.27 -0.48 0.04 

Drought indices monitoring 

The spatial-temporal pattern 

of vegetation supply water in-

dex (VWSI) 

VWSI can reflect the state of 

water supply for vegetation; but 

due to the great difference in 

the value ranges of NDVI and 

LST, very small values of 

VWSI were generated. VWSI 

values of the years 2013, 2018, 

and 2019 show most areas have 

experienced moderate to severe 

drought during the summer sea-

son. Whereas in spring seasons 

of these years, there is a less 

extreme severe drought in the 

area. Figure 11 shows more are-

as experience severe to moder-

ate drought in all three years in 

a similar pattern in the summer 

season. The areas with extreme 

drought in the area are mostly 

the bare soil area, for example 

in mine tailing dumps in the 

area. The grassland regions are 

the major or mainland cover 

with severe drought impact. 

Figure 12 shows most of the 

areas experienced moderate 

drought with some parts having 

a severe drought. Most of 

KOSH shows a dominant mild 

to no drought condition in fig-

ure 12 and figure 11 shows are-

as with severe drought with 

moderate and no drought areas.  

Fig. 11. Spatial-temporal pattern of VSWI dynamics of KOSH during 
the summer season of the year (a) 2013, (b) 2018 and (c) 2019 

а) 

b) 

c) 
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Fig. 12. Spatial-temporal pattern of VSWI dynamics of KOSH during the spring season of the year                     
(a) 2013, (b) 2018 and (c) 2019 

 

 

а) 

b) 

c) 
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The spatial-temporal pattern of crop water supply index (CWSI) 

Crop water supply algorithm show results of the spread of drought-affected land cover-open 

class land. CWSI method for all three years showed locations with water stress (fig. 13). CWSI is 

very different due to the appearance of undeveloped land which has a dominant value of high sur-

face temperatures. CWSI is more relevant to the condition of having low soil moisture which 

proved that in many areas there is not much water on the surface. Figure 14 shows spring season 

results were in the year 2018 the results shows differs than the year 2013 and 2019. 

Fig. 13. Spatial-temporal pattern of CSWI dynamics of KOSH in the summer season of the year                          
(a) 2013, (b) 2018 and (c) 2019 

а) 

b) 

c) 
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Fig. 14. Spatial-temporal pattern of CSWI dynamics of KOSH during the spring season of the year                    
(a) 2013, (b) 2018 and (c) 2019 

а) 

b) 

c) 
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The spatial-temporal pattern of temperature condition index (TCI) 

The results of TCI and CWSI methods in the year 2013 help to detect similar areas where there 

is drought. Figure 15  and figure 16 show the result of TCI for the summer season of the year 2019 

and spring season of the year 2018.  

Fig. 15. Spatial-temporal pattern of TCI dynamics of KOSH during the summer season of the year                   
(a) 2013, (b) year 2018 and (c) year 2019  
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From the TCI results, it can be seen that the dominant value of high surface temperatures seen 

in the years 2018 and 2019 matches with areas of high drought. In the year 2019, the appearance 

of TCI and CWSI is very different due to the appearance of undeveloped land which has a domi-

nant value of high surface temperatures. TCI in 2019 is still able to distinguish the wet location. In 

all three images in the summer seasons of the study period, more areas that are experiencing 

drought can be detected (fig. 16).  

Fig. 16. Spatial-temporal pattern of TCI dynamics of KOSH during the spring season of the year                       
(a) 2013, (b) 2018 and (c) 2019 
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Conclusion 

The presented study could successfully estimate land surface temperature (LST) and drought 

indices and analyse the changing pattern of the LST and other indices. The results show that high 

surface temperature values have a positive correlation with drought events in an area; the higher 

the surface temperature the higher the drought and a negative correlation with wet conditions. The 

drought indices VSIW, TCI and CWSI methods were tested for drought monitoring. The results 

also show that the LST helps to determine areas with drought without making use of drought indi-

ces. Grassland that covers most of the area in the study area experience more drought than other 

land covers. The finding shows areas where there is grassland cover, the LST values are high; 

whereas the cultivated area shows low values of LST. The findings show that LST has a negative 

relationship with NDVI and positive relationship with NDBI. The study also indicates mean varia-

tion between NDBI, NDVI and LST. The mean of the LST increases from 2013 – 2019 on both 

seasons. The results also verified that some areas have experienced drought mostly in areas with 

grassland cover. Most areas of the KOSH had low NDVI because of low vegetation cover. The 

VSWI, TCI and CSWI show results of the spread of drought across the area where some areas ex-

perience severe drought. The results indicate that LST in certain parts of the area especially to the 

southwest, northwest and northeast regions experience high LST values. It is recommended that 

LULC mapping should also be conducted for particular periods of study to understand the dynam-

ics of land surface temperature fluctuation concerning a specified period.  

The study has shown the importance of land use/land cover in estimating the land surface tem-

perature. An inverse (negative) relationship between LST and water bodies and vegetation cover 

was found while a direct positive relationship between LST and built up, and barren land area was 

observed. It was concluded that the increase in vegetation and water bodies can greatly decrease 

the land surface temperature of any region. The relationship between the LST and VI are negative 

which implies that the lower the LST the higher the NDVI and the higher the LST the lower the 

NDVI. Vegetation plays the biggest role in reducing the land surface temperature from increasing 

whereas on the other hand built-up area plays a major role in increasing land surface temperature. 

Therefore, a better option to have lower LST is to reduce the built-up land when the population is 

growing; rather increase in vegetation cover in the built-up area can reduce the LST. 
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